Role of insulin-dependent cortical fodrin/spectrin remodeling in glucose transporter 4 translocation in rat adipocytes.
نویسندگان
چکیده
Fodrin or nonerythroid spectrin is an abundant component of the cortical cytoskeletal network in rat adipocytes. Fodrin has a highly punctate distribution in resting cells, and insulin causes a dramatic remodeling of fodrin to a more diffuse pattern. Insulin-mediated remodeling of actin occurs to a lesser extent than does that of fodrin. We show that fodrin interacts with the t-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) syntaxin 4, and this interaction is increased by insulin stimulation and decreased by prior latrunculin A treatment. Latrunculin A disrupts all actin filaments, inhibits glucose transporter 4 (GLUT4) translocation, and causes fodrin to partially redistribute from the plasma membrane to the cytosol. In contrast, cytochalasin D disrupts only the short actin filament signal, and cytochalasin D neither inhibits GLUT4 translocation nor fodrin redistribution in adipocytes. Together, our data suggest that insulin induces remodeling of the fodrin-actin network, which is required for the fusion of GLUT4 storage vesicles with the plasma membrane by permitting their access to the t-SNARE syntaxin 4.
منابع مشابه
Calpain facilitates GLUT4 vesicle translocation during insulin-stimulated glucose uptake in adipocytes.
Calpains are a family of non-lysosomal cysteine proteases. Recent studies have identified a member of the calpain family of proteases, calpain 10, as a putative diabetes-susceptibility gene that may be involved in the development of type 2 diabetes. Inhibition of calpain activity has been shown to reduce insulin-stimulated glucose uptake in isolated rat-muscle strips and adipocytes. In this rep...
متن کاملInsulin receptor signals regulating GLUT4 translocation and actin dynamics.
In skeletal muscle and adipose tissue, insulin-stimulated glucose uptake is dependent upon translocation of the insulin-responsive glucose transporter GLUT4 from intracellular storage compartments to the plasma membrane. This insulin-induced redistribution of GLUT4 protein is achieved through a series of highly organized membrane trafficking events, orchestrated by insulin receptor signals. Rec...
متن کاملEnigma interacts with adaptor protein with PH and SH2 domains to control insulin-induced actin cytoskeleton remodeling and glucose transporter 4 translocation.
APS (adaptor protein with PH and SH2 domains) initiates a phosphatidylinositol 3-kinase-independent pathway involved in insulin-stimulated glucose transport. We recently identified Enigma, a PDZ and LIM domain-containing protein, as a partner of APS and showed that APS-Enigma complex plays a critical role in actin cytoskeleton organization in fibroblastic cells. Because actin rearrangement is i...
متن کاملSphingomyelinase has an insulin-like effect on glucose transporter translocation in adipocytes.
Rat epididymal adipocytes were incubated with 0, 0.1, and 1 mU sphingomyelinase/ml for 30 or 60 min, and glucose uptake and GLUT-1 and GLUT-4 translocation were assessed. Adipocytes exposed to 1 mU sphingomyelinase/ml exhibited a 173% increase in glucose uptake. Sphingomyelinase had no effect on the abundance of GLUT-1 in the plasma membrane of adipocytes. In contrast, 1 mU sphingomyelinase/ml ...
متن کاملActin filaments play a critical role in insulin-induced exocytotic recruitment but not in endocytosis of GLUT4 in isolated rat adipocytes.
Actin-based cytoskeletons have been implicated in insulin-stimulated glucose transport and translocation of the insulin-regulated glucose transporter, GLUT4, from the intracellular pool to the plasma membrane. However, most previous studies were done using adherent cell systems such as L6 myotubes and 3T3-L1 adipocytes, and very little information is available on the significance of the actin f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 17 10 شماره
صفحات -
تاریخ انتشار 2006